
3D Computer Graphics

Jared Kirschner

November 8, 2010

1



Abstract

We are surrounded by graphical displays—video games, cell phones, televi-
sion sets, computer-aided design software, interactive touch screens, instru-
ment panels, and countless others. In order to understand how image data
can be manipulated and rendered on a screen to produce a coherent, realistic
image, we need only to understand some basic concepts of linear algebra.

To produce an image, we will need a set of vectors (points) defined in the
relevant dimension (Rn where n ≥ 2), mathematical information defining the
connections between points (in the form of lines or curves), and information
concerning how to fill the region bounded by the sets of connected points. [1]
For the purposes of this paper, we will be focusing on the vectors in R3 which
define the nodes of an image. By performing linear transformations on the set
of vectors through matrix multiplication, we can translate, rotate, scale, and
distort an image in Rn, among other possibilities. But ultimately, to display
the graphics in two dimensions, we must perform a linear transformation
from Rn to R2. Through the use of perspective projections, we can create
a two-dimensional set of data which appears to the observer as an object
in n-dimensional space (usually R3). By combining these transformations,
the complex animations and visuals we have grown so accustomed to in our
modern world are made possible.

1 Vector Data

To represent a three-dimensional object, it is trivial to state that we need at
least three dimensions of data per vector. However, in the case of computer
graphics, we actually use (n+ 1)-dimensions of data to store and manipulate
n-dimensions of data. A vector ~p = (x, y, z) in R3 can be represented as a
plane in R4 at 1 unit above the xyz-plane by the homogenous coordinates of
~h = (X, Y, Z,H) where H 6= 0 and:

x =
X

H
, y =

Y

H
, z =

Z

H
(1)

Using a homogenous coordinate system provides two key advantages.
First, it allows scaling and translation to be achieved by matrix multipli-
cation. Second, it allows for perspective projections which make a two-
dimensional image appear three-dimensional.



2 Data Transformations

Before processing the vector data to produce a realistic image, it is neces-
sary to perform transformations on the object such that it has the desired
properties in R3. Translation, rotation, shearing, and scaling are examples
of transformations one might want to do before processing the data into an
image. As shearing and scaling are fairly elementary operations, they will
not be discussed here.

2.1 Translation

In a non-homogenous coordinate system, translation must be accomplished
by matrix addition rather than matrix multiplication. This is because T (x, y, z) 7→
(x + t1, y + t2, z + t3) where ~t = (t1, t2, t3) is the translation vector in R3 is
not a linear transformation. All matrix transformations are linear transfor-
mations, therefore, the transformation T cannot be obtained from matrix
multiplication. As “the mathematics of computer graphics is intimately con-
nected with matrix multiplication”, we will instead perform translation by
matrix multiplication using homogenous coordinates: [2]

X + t1
Y + t2
Z + t3
H

 =

[
I3 ~t
0 1

]
X
Y
Z
H

 (2)

. . . where I3 is the 3 × 3 identity matrix, and ~t is the translation vector
in R3. The partitioned matrix given in Equation 2 can be extended to any
dimensional space Rn. However, in this particular case, we are examining how
a vector in R3 represented by homogenous coordinates can be successfully
translated using matrix multiplication.

2.2 Rotation

Let us examine a vector ~v in R2. In order to define a linear transformation
T such that T (~v) is a rotation of ~v by θ radians, we must find the standard
matrix A of the transformation such that T (~v) = A~v. The columns of the
standard matrix A will be the transformations of the columns of the identity
matrix, as shown below.

~v =

[
v1
v2

]
= v1

[
1
0

]
+ v2

[
0
1

]
= v1e1 + v2e2

Therefore,

2



T (~v) = T (v1e1 + v2e2) = v1T (e1) + v2T (e2) = [T (e1) T (e2)]~v = A~v

If we rotate the columns of the identity matrix by an angle θ, it can be
seen that T (e1) = (cos(θ), sin(θ)) and T (e2) = (− sin(θ), cos(θ)) (refer to
Figure 1). Therefore:

A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Figure 1: Rotation of the columns of the identity of the xy-plane about the
z-axis.

A similar analysis can be used to determine the standard matrix A for a
rotation in R3 along any axis.

T (~h) =

[
A 0
0 1

]
~h

Unfortunately, such a transformation only rotates the vector about the
origin. In computer graphics, the ability to rotate about a specific point
is generally more useful. To accomplish this, we can combine translational
and rotational transformations. For a given homogenous coordinate ~h and
a point of rotation ~p, we will translate ~h by −~p, thus moving the point of
rotation ~p to the origin. After performing the rotation about the origin, we
can move the point of rotation from the origin back to its original position

3



by translating by ~p. Therefore, the composite transformation S(~h) is equal

to T (~h− ~p) + ~p (see Equation 3).

S(~h) =

([
I3 ~p
0 1

] [
A 0
0 1

] [
I3 −~p
0 1

])
~h (3)

3 Image Transformations

After an object has the desired properties in R3, it must be transformed into
R2 for display. The easiest way to do this would be to perform a simple
projection of each vector onto a two-dimensional plane such as the xy-axis.
Unfortunately, this would not produce a very realistic image. To create a
realistic image, we must take into consideration factors such as the position
of the observer (perspective) and of light sources (shadows), among others.

3.1 Perspective Projection

Let us define a point of observation ~pc = (b, c, d) in R3 from which the three-
dimensional object is being viewed. This point is referred to as the center of
projection. If we project each point of the image ~p in R3 onto the xy-plane
from the center of projection, we can create a two-dimensional representation
of the three-dimensional image. To project a point onto a plane, we must
find the location at which the line through ~p and ~pc intersects the desired
plane (see Figure 2).

Figure 2: Perspective projection of a point (x, y, z) in R3 onto the xy-plane
from the center of projection (b, c, d).

4



The line ~l(t) through any two vectors ~v1 and ~v2 can be defined as ~l(t) =
~v1 + t(~v2−~v1). As such, we can define a line through the center of projection
~pc and a point ~p in R3 as:

~l(t) = ~pc + t(~p− ~pc) =

b+ t(x− b)
c+ t(y − c)
d+ t(z − d)

 (4)

We can find the point ~p∗ = (x∗, y∗, z∗) where ~l(t) intersects with the
xy-plane by defining z∗ = 0. This allows us to solve for t:

0 = l(t)3 = d+ t(z − d) ∴ t =
d

d− z
Now that we have solved for t, from Equation 4 we can define the point

~p∗:

~p∗ =

b+ d
d−z

(x− b)
c+ d

d−z
(y − c)

d+ d
d−z

(z − d)

 =


x− b

d
z

1− 1
d
z

y− c
d
z

1− 1
d
z

0

 (5)

For the homogenous coordinate ~h = (X, Y, Z,H), we can express its pro-

jection onto the xy-plane as ~h∗ =
(

x− b
d
z

1− 1
d
z
,
y− c

d
z

1− 1
d
z
, 0, H

)
. In a homogenous

coordinate system, scalar multiplication does not affect the vector (x, y, z) in

R3 (refer to Equation 1). As such, we can multiply ~h∗ by the scalar
(
1− 1

d
z
)

to eliminate the fractions. We can express the perspective transformation Up

as Up(X, Y, Z,H) 7→
(
x− b

d
z, y − c

d
z, 0, H(1− 1

d
z)
)
. Let Gp be the standard

matrix of transformation Up; the matrix equation Gp
~h = ~h∗ can be expressed

as follows: 
1 0 − b

d
0

0 1 − c
d

0
0 0 0 0
0 0 −1

d
1



X
Y
Z
H

 =


X − b

d
z

Y − c
d
z

0
H(1− 1

d
z)

 (6)

To display the image in R2, we simply divide the vector by H∗ (the
fourth element of the vector) as per Equation 1 to force the fourth entry to
1. When H = 1, (X, Y, Z) = (x, y, z), allowing for direct mapping. As the
z-component of this vector is zero because we have projected it onto the xy-
plane, it can readily be displayed as R2 by dropping the last two elements (Z
and H). To accomplish this with matrix multiplication, we can left-multiply
the vector by the following matrix to produce a projection onto R2:

5



[
1 0 0 0
0 1 0 0

]

3.2 Realistic Shadows

To create realistic shadows, we need to define at least one source of lighting
~ps = (b, c, d) and a surface of projection. In most cases, this surface of
projection is the ground. For our purposes, we will assume a flat surface
at y = 0, but the methods discussed below can be used to determine the
projection of a shadow onto any surface.

As in Section 3.1, we begin by defining the line ~l(t) which passes through

a point ~p and the surface of projection. In this case, ~l(t) = ~ps + t(~p − ~ps).

To determine the point ~p∗ = (x∗, y∗, z∗) at which ~l(t) passes through the
xz-plane (y∗ = 0), we can solve for the parameter t:

0 = l(t)3 = c+ t(y − c) ∴ t =
c

c− y
By the methods discussed in Section 3.1, we can express the perspective

transformation Us as Us(X, Y, Z,H) 7→
(
x− b

c
y, 0, z − d

c
y,H(1− 1

c
y)
)
. Let

Gs be the standard matrix of transformation Us; the matrix equation Gs
~h =

~h∗ can be expressed as follows:
1 − b

c
0 0

0 0 0 0
0 −d

c
1 0

0 1
c

1 1



X
Y
Z
H

 =


X − b

c
y

0
Z − d

c
y

H(1− 1
c
y)

 (7)

To display an image with a shadow, we will perform a perspective projec-
tion (refer to Section 3.1) on both the image data ~h and its shadow projection

onto the xy-plane ~h∗. After the perspective projection, we will once again
divide by H∗ as per Equation 1 and remove the z-component of the resulting
vector for display in R2 by a simple projection.

4 The Results

Now that we have covered some of the basics of computer graphics, we will
discuss how to produce an animation. We start by defining our image as a
collection of vectors ~h in a homogenous coordinate system. These vectors will
be arranged columnwise in a matrix Mh to produce our data matrix such that
Mh = [~v1 . . . ~vm] where m is the number of vectors in the image. To construct

6



an image, we also need to define the connections between vectors. This can
be done with an m×m adjacency matrix K where the position Kij denotes
whether or not a connection exists from ~vi to ~vj. Though this matrix can
become very large depending on the number of vectors in an image, it can
be compressed by conversion to a sparse matrix. However, sparse matrices
are beyond the scope of this discussion.

Figure 3 shows an animation of a wire-frame car where the point of ob-
servation pans from ~pc1 to ~pc2 with a light source at ~ps. The wire-frame car
is represented as a matrix Mh with columns of the homogenous coordinates
of each vector in the image. A series of transformations is performed on
Mh before it is displayed as a two-dimensional image. We first perform data
transformations which simply map R4 onto R4. To display the image, we
perform image transformations from R4 to R2.

Figure 3: A series of frames showing the view of a wire-frame car as the
point of observation pans from (−50, 50, 50) to (50, 0, 50) with a light source
at (0, 1000, 500). The wire-frame car itself is about 13 units wide, 4 units tall
at its highest point, and 5 units wide.

7



To produce an animation of the type described above, we have several
options. To make an object appear that it is moving, all that matters is the
relative motion between the observer and the observed. As such, we can pro-
duce the same animation by translating the object with a data transformation
or by moving the point of observation the same amount (thus changing the
perspective projection—an image transformation). A similar argument can
be used to show that a perceived rotation can be obtained with a rotation
(data transformation) or a change of perspective (image transformation).
In this particular implementation, I have chosen the latter option. This is
because the light source is defined in the reference frame of the observer.
Therefore, for the car to have a constant shadow (stationary object with a
moving observer), we must use image transformations. If we wish to have
a dynamic shadow (moving object with a stationary observer), we must use
data transformations. Though there will be no observable difference between
the method used for a light source at a significant distance on a relative scale
(such as the sun), a significant difference between methods will be observed
for local light sources (such as candles, light bulbs, et cetera).

To produce the image of the car in two-dimensions, the following equation
was used:

Mcar =


1 0 −p1(t)

p3(t)
0

0 1 −p1(t)
p3(t)

0

0 0 0 0
0 0 − 1

p3(t)
1

Mh

. . . where ~p(t) is the parametric equation of the center of observation de-
pendent on time t such that ~p(t) = ~p1 + ~p2−~p1

tmax
for t ≤ tmax and Mcar is the

resulting matrix.
To produce the shadow of the car in two-dimensions, we perform a pro-

jection onto the xz-plane (y = 0), representing the ground, and then perform
a perspective projection on the result:

Mshadow =


1 0 −p1(t)

p3(t)
0

0 1 −p1(t)
p3(t)

0

0 0 0 0
0 0 − 1

p3(t)
1




1 −ps1
ps2

0 0

0 0 0 0
0 −ps3

ps2
1 0

0 1
ps2

1 1

Mh

We then normalize each column of matrices Mcar and Mshadow by their
fourth entries (refer to Equation 1). To map the R4 onto R2, we can simply
delete the third and fourth row of the matrices or we can left-multiply by the
standard matrix

[
I2 ~0 ~0

]
of a projection transformation. These vectors

8



are then connected by the information contained in the adjacency matrix K.
In this case, straight lines are used to connect vectors (refer to Figure 3).
However, other methods can be used to connect vectors, and would simply
require additional mathematical data.

9



References

[1] Lay, D. C. (2003). Linear Algebra. Retrieved October 19, 2010, from
Pearson Education: http://media.pearsoncmg.com/aw/aw lay linearalg
updated cw 3/cs apps/lay03 02 cs.pdf

[2] Lay, D. C. (2006). Linear Algebra and Its Applications. Pearson/Addison-
Wesley.

10


