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A Model of an N-Body System at Fixed Electrical
Potentials

Jared Kirschner, Noah Tye

Abstract—We discuss the creation of a model which can be used
to dynamically simulate a system of n-bodies at fixed electrical
potentials within any defined boundary. We will also describe
how this model can be discretized and solved numerically.

I. INTRODUCTION

MANY questions in electromagnetism require one to
solve for the electric potential and/or electric field in a

defined segment of space. Some solutions, such as integral
formulations, are only useful for simplistic situations. The
resulting integral often cannot be evaluated analytically due to
its complexity and will only work if the rest of the universe is
empty (in other words, the boundary conditions are assumed
to be zero at infinity). In cases of high symmetry, we can
solve for the electric field with Gauss’ Law much more
quickly than with an integral formulation. However, Gauss’
Law also assumes that the rest of the universe is empty, or
can only be accurate over small regions of space. By using
a complete basis set and Fourier’s “trick,” one can derive an
equation describing the voltage between defined boundaries
(from which the electric field can be derived). However, such
an approach is only feasible in cases with simple boundaries.
Herein we shall develop a model which can be used to
model and behavior of any boundary condition containing any
number of bodies. This approach will use a discrete model
which can be described by a matrix equation. This matrix
equation can this be solved numerically to show the voltage
and electric field at any point.

II. GOVERNING EQUATIONS

According to Poisson’s Equation, the net curvature of the
potential at an arbitrary region is ∇2V = ρ

ε0
, where V is

the electrical potential, ρ is the charge density, and ε0 is the
permittivity of free space. In regions without charge, we have
Laplace’s Equation:

∇2V = 0 (1)

We can then derive the electric field from the potential
difference through the following definition:

E = −∇V (2)
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Lastly, we must consider the force acting on each object
from its interactions with other objects and the boundaries.
Each object of fixed potential will tend to move towards
the region with the strongest electric field. The electrostatic
pressure at each point is equal to:

~P =
∫

~FdA =
∫

1
2
ε0| E |2dA n̂ (3)

. . . where ~P is the pressure, ~F is the force, dA is the
differential area, ε0 is the permittivity of free space, and n̂
is the normal unit vector to the surface. By integrating the
contributions to the electrostatic pressure along the entire
surface of the object and then dividing by the surface area,
we obtain the net force. We can then divide this force vector
by the mass of each object in order to obtain its acceleration
vector.

III. THE MODEL

In order to solve Laplace’s equation (equation 1), we will
formulate a matrix equation which can be solved in matrix.
For a position pn,m, the solution to Laplace’s equation can be
expressed as:

∇2Vn,m =
Vn−1,m + Vn+1,m + Vn,m−1 + Vn,m+1

4
(4)

In order to determine the general formula for the matrix
equation, we can write out the equations for all points within
a small grid of n · m internal points and an outer boundary
(top t1:n, left l1:m, bottom b1:n, right r1:m). For example, point
1,1 will have the following equation: Vt1+Vl1+V2,1+V2,1

4 = 0.
All constants will move to the right side of the equation; in
the given example equation, the two boundary conditions will
both be constants and move to the right side. If either point
V1,2 or V2,1 is defined, these will also move to the right side
of the equation. We then place the elements on the left side
of the equation into an n × m diagonal matrix, D, and the
right side of the equations into a columnwise vector of n ·m
elements, b. By dividing D into b, we solve for a columnwise
vector v of potentials where the indicies 1:n ·m correspond
to indicies associated with each subscripted point.

After writing out a small (x × y) matrix by hand, one can
derive the following general patterns:

1) The central diagonal is always equal to −1.
2) The ±1 diagonals have a pattern such that there is a

repeated unit where the first x− 1 elements are 1
4 , and

the (x− 1)th element is 0.
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3) The ±x diagonals are always equal to 1
4 .

We can also write out the general pattern for the columnwise
vector b using the same assumptions:

1) Top Row: For the first lenXth elements, we will add a
constant of −Vtn

4 where n is the current position in the
array of appropriate elements.

2) Bottom Row: For the last row (x · (y − 1) + 1 : x · y
elements), we will add a constant of −Vbn

4 where n is
the current position in the array of appropriate elements.

3) Left Row: For every index i · x + 1 where i is any
non-negative integer below y, we will add a constant
of −Vli+1

4 .
4) Right Row: For every index i ·x where i is any positive

integer value less than or equal to y, we will add a
constant of −Vri

4 .
Lastly, to account for positions within the grid that one

wishes to define, change all points which had been defined as
variables in the matrix D to zero, and move the defined values
into the columnwise vector b as dictated by the equations. For
example, if a point is defined within a row of the matrix to
have a coefficient of 1

4 , this coefficient will have to be applied
to the constant (and the sign changed, reflecting moving the
constant to the other side of the equation) to move it accurately
into the columnwise vector b of constants. As this element has
now been defined, the row corresponding to its index will be
removed from the matrix and the columnwise vector.

After performing this operation on all defined points, the
matrix equation can be solved numerically in one step. How-
ever, as the matrix has dimensions of (n ·m)2, one will find
that such a computation can be fairly memory intensive. In
order to vastly reduce the memory usage of the program, one
can use sparse matrices, which essentially map subscripts to all
non-zero elements of a matrix. As the matrix we have created
is mostly zeros, a very high compression (between 102 and
103) can be achieved.

The solution to this matrix equation will yield the potential
at all internal points of the grid. Using equation 2, we can solve
for the electric field at all internal points. With the electric
field, we can calculate the net force on the surface of an object
of defined potential using equation 3. Through these methods,
one can not only calculate the field for n bodies, but simulate
their motion through time.


